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Abstract. We study the semiclassical limit a f t h e  spin boson model, where the spin remains 
quantized and the field is expanded around the classical limit of a large number of photons, 
using a phase representation due to Bialynicki-Birula and Bialynicki-Birula. We derive the 
semiclassical Hamiltonian and prove that in the semiclassical expansion there always arises 
a back reaction of the atom on the field. The nearest-neighbour spacing distribution of 
levels is studied in  the same limit and shown to be, in general, qualitatively different from 
thedistribution fartheoriginal model. However, the comparison between the Dyson-Mehta 
statistics is also studied and no qualitative difference is visible for the function A,. 

1. Introduction and summary 

The spin boson model is a very interesting model in physics, with a large variety of 
applications [l]. In this paper we shall be interested in the applications to quantum 
optics, where the spin represents a two-level atom (for spin-;) and the boson the 
electromagnetic field. In a recent paper [2] we studied the classical limit of the model. 
The classical equations of motion of [3], which exhibit chaotic behaviour for large 
coupling constant, are obtained from the Heisenberg equations of motion for the 
quantum model, upon requiring the usual ‘factorization property’ (see [1] and referen- 
ces therein). The latter property is rigorously derivable from the N + m  limit of an 
N-atom Hamiltonian, in a precise sense [4], reviewed in the first pan  of [2], in which 
both the atoms and the field become classical. This property is therefore harder to 
justify-in spite of its thorough use-for the micromaser [5], where a single two-level 
atom interacts with the field of a single mode lossless resonator. This led us to study 
what we call the semiclassical limit of the model, where the spin remains quantized 
and the field is expanded around the classical limit for the beam, which corresponds 
to a large number no of photons [6]. 

In order to evaluate most conveniently the effects of the counter-rotating terms, we 
consider the following Hamiltonian: 

H = oa+a+w,S,+A[(S+a +S-n+)+~(S+a+fS-a ) ]  (1.1) 
on the tensor product C2@?F, where S,, S,, S, are spin-toperators satisfying [S , ,  S,] = 
iS, (with cyclic permutations), S*= (Sx+iSy)/Z; a, a+ are standard annihilation and 
creation operators with [ U ,  a’] = 1 acting on Fock space 9, and the frequencies w, oo 
( h  = 1) and the coupling A are real constants, which we take to be positive. The 

0305-4470/91/071661+ 15$03.50 @ 1991 IOP Publishing Ltd 1661 



1662 

anisotropy parameter 0s E S 1 interpolates between the Jaynes-Cummings model [7] 
( E  = 0), where the rotating-wave approximation is made, and which is therefore classi- 
cally integrable, and the spin boson model ( E  = 1) which is classically chaotic for large 
A. The parameter E is therefore a suitable measure of the deviation from integrability. 

This paper is organized as follows. In section 2 we study (1.1) (for simplicity only 
for E = 1) in the phase representation for intense photon beams (i.e. with a large number 
no of photons) due to Bialynicki-Birula and Bialynicki-Birula [8], which allows an 
expansion of the creation and annihilation operators in powers of no. Our main result 
is the derivation of the semiclassical Hamiltonian. It is thereby seen that the Autler- 
Townes Hamiltonian [gl-which yields a linear non-autonomous set of equations of 
motion without chaotic behaviour [ ]]-is not obtained from the semiclassical expansion 
of the quantum Hamiltonian: it does not correspond to the first-order term, while, in 
second order, further terms arise in the expansion which preserve the nonlinear 
character of the equations of motion and represent a back reaction of the atoms on 
the field. The physical situation without back reaction which is described by Autler 
and Townes is, nevertheless, realizable, and it may be asked whether it may be derived 
from the interaction of atoms with a quantized field in a proper limit. The results of 
section 2 seem to suggest that this might only be possible if the system (atoms+field) 
is described as an open system, but the problem remains unresolved. 

In section 3 we undertake a (partial) diagonalization of the semiclassical version 
of (l.I), with a view to studying the level statistics of the model. It is seen that, in 
spite of the anisotropy ( E  f 1) in ( l . l ) ,  both the Hamiltonian (1.1) and its semiclassical 
version are partially diagonalizable by the same transformation introduced by Shore 
and Sander [lo]. The eigenvalue equation is formulated in a subspace corresponding 
to a definite eigenvalue of the parity operator introduced by Graham and Hohnerbach 
(see [ I ]  and references therein). In addition, due to the nature of the phase approxima- 
tion and the semiclassical expansion, we must restrict ourselves to a finite subspace 
of C 2 0 F ,  this leads us naturally to the study of boundary conditions. Both free and 
cyclic boundary conditions are considered, and it is seen that the latter must he chosen 
if unitarity of the phase operator is required, relating the present formulation to the 
nice construction by Pegg and Barnett [ll]. In an appendix we briefly point out the 
parts of the relationship between the formalisms of [8] and [ I l l  which are actually 
used in section 3. A more general discussion will be given elsewhere [12]. For complete- 
ness, we also briefly discuss in section 3 the effect of the Shore-Sander transformation 
on these boundary conditions. 

In section 4 we present the nearest-neighbour distribution (NND) of levels, using 
the results of section 3 and varying the parameter E from 0 to 1. The N N D  is seen to 
change from a 'delta-peak' distribution (for E = 0) to a distribution (for E = 1) similar 
to the one found by Kus [13], which is not of the general type associated with chaotic 
systems for reasons which are well understood [13]. The results are compared with 
the analogous ones for the original model (no phase approximation). The basic and 
most interesting result is that the two level statistics are generally qualitatively different 
(except for E = 1). This is further explained in section 4. The distribution of spacings 
between neighbouring levels depends, however, on level density correlations of all 
orders and is, therefore, a non-perturbative quantum effect. It is therefore of interest 
to know whether qualitative differences between the original and semiclassical models 
persist in the level statistics of finite order, in particular in the statistics of lowest order 
(bilinear) in the level density such as A3.  This is not the case, however, as we show 
and discuss in section 4. We also show that for a higher value of the spin S ( S = P )  
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there is a transition from the Poisson N N D  (for E -0) to the Wigner GOE (for E = 1) 
in the original model (this was already known for E = 1 [14]). This result is a good 
demonstration of the effectiveness of the parameter E, but we do not include it in 
section 4 because for such a value of S one seems to be close to the classical (as 
opposed to semiclassical) limit (see also [ 2 ]  and [lS]). 

2, The eo_uations of motion in the phase representatinn nf Bialynicki-Rirula 

I n  this section we restrict ourselves, for simplicity, to the spin boson model ( E  = 1 in 
( l . l ) ) ,  whereby the Hamiltonian becomes 

H = w a + a + w , S , + A S x ( a + a i ) .  ( 2 . 1 )  
Following [SI, we introduce a representation of the eigenstates I n )  of the number 

operator N- in terms of harmonic wavefunctions of an auxiiiary variable 4. it is 
convenient to 'shift' the eigenvalues by a constant integer no (interpreted as the 'large' 
photon number around which the state of the radiation field is expanded), adopting 
the following correspondence rule between state vectors and wavefunctions [SI: 

In,+m)+ e'". 
The corresponding representation of the annihilation and creation operators are 

given by 

(1 = e-i+ ( n o + p d ' / 2  (2.2) 
a + = ( n 0 + p 4 )  (2.3) 

(2.4) 
where p+ = -id/d&, acting on the Hilbert space L2(0, 271). The above representation 
is clearly valid only on the subspace with n,+p, > 0 in order that the square roots in 
(2.3) and (2 .4)  be defined. This and other mathematical questions, as well as the 
relationship with the unitary phase introduced by Pegg and Barnett [ 111 ,  will be treated 
elsewhere [ 1 2 ] ,  but we provide a brief discussion in the appendix, where, in particular, 
the cyclic boundary condition used in section 3 is justified. For large no,  

112 

+ a a = n , + p ,  

The above expansions hold strongly on a proper subspace of 5 (see appendix). It is 
often asserted that, in the phase representation, 'in the limit n,+m', the Hamiltonian 
may he written as 

(2.7) 
([ 161; see also [ 11 section 3c). The Heisenberg equations of motion for this Hamiltonian 
are 

(2.8a) 

(2.86) 
( 2 . 8 ~ )  
(2 .8d)  
(2.8e) 

2 =now + wp, + woS, + 2 A G  S, cos & 

- 
S, = i[H, S,] = -woS, 
S, = i[k, S,] = woS, - 2 A 6  S, cos 4 
3, = i[k, s,] =ZAG S, cos 4 
,j =i[fi, 41 = w 
pa = $2, p,] = 2 A G  S, sin 4. 
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Note that, by (2.8e), the equation for p+ does contain the 'back reaction' effect of the 
atoms. This effect does not, however, appear in the first-order approximation for the 
annihilation operator in (2.5): 
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a -6 - i+ 
I -  o e  

(we denote by a subscript the 'order of approximation'). Indeed, if we use the 
Hamiltonian k given by (2.7), the Heisenberg equation of motion for a ,  reads 

a, = i [k ,  a, l=&iw[p,,  e-'"]= -ion, (2.8.f) 

and similarly 

(2.Q) 
a i - .  + , --lwal.  

Equations (2.8.fj and (2.8gj together with (1.8a j-(2.8c) are just the equations of Autier 
and Townes ([9], [l] section 3c) corresponding to the non-autonomous effective 
Hamiltonian 

HAT= woSzf2A& S, cos wt. 

They correspond to the (physically realizable) situation of no back reaction of the 
atoms on the field, expressed by (2.8.f) and (2.8g), which may be compared with the 
Heisenberg equation of motion in the original model: 

a=i [H,  a]=-iwa-iASx (2.9) 

Nnte that, i" ardc: tn nbtain E!! the !ermS 0" the KHS af Q.?), nIle has tn expa..d 
(and a similar equation for a+). 

both H and a to order l/&. We see, however, that in order to obtain (2.8.f) it was 
necessary to keep the term wpm in Hamiltonian (2.7). Note that this term, although 
exactly related to a + a  by (2.4), actually results from the 'mixed term' in a t a  in 
expansions (2.5) and (2.6) if we ask for a consistent development in descendicg powers 
of &. Hence, we must use the expansions up to second-order terms given by (2.5) 

adding to (2.7) an additional term. Indeed, if we try to keep (2.7) and a in the form 
.Ed (2.5) ir? the third (m!p!ir?g) term of H2!Tli!to!?i2!? Q!)~ This requires, however3 

then some 'back reaction' is necessarily present, but not in the correct form, i.e. the 
Heisenberg equation (2.9) is not preserved up to second order, as we now show. Using 
k given by (2.7) as the Hamiltonian, we have, by (2.10), 

-ico2 + .".& c-'+ .in + 

which does not agree with (2.9). Now, replacing f i  by the 'second-order' Hamiltonian 

H1'now+wpm+w,S,+2A~S,  cos $+-Ss,(e-"p++pm e'")  (2.11) A 
2& 
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we find 

az=i[H2, a>] 

= 
iw 

p4 + AS, e-'+ sin 4 
2 6  

=-iwa,+hS,e~" sinq5+-SX(e-"[p,,e iA -i+ ] + [ p + , e ~ ' m ] e " ) + O ( n i ' )  
2 

i A  
2 

=-ioa,+AS,e-'" s inq5- -&(e~z 'm+l )+O(n i ' )  

= -iwa,-iAS,+O(no') 

in agreement with (2.9). Hz leads to the Heisenberg equations of motion 

S, = i[ H2, S,] = -w&, (2.12a) 

(2.12b) 

1 
$=i[H2,  S,]=w,S,-AS, 2 G c o s  ++-(e-'"p++p, e'") 

2& 

= w& - AS,(a,+ U:)  

.$,=i[H,,S,]=AS, 

= AS,(U,+U:) 

which agree with the equations for (2.1). Further, 

(2.12r) 

A 
q5 = i[H2, $1 = w +- S, cos q5 

pm = i[H2,pmJ =2A& S, sin ++- Sx(e-'+pp, -p+  e'"). (2 .124 

Hence, the additional operator term in (2.1 1 )  introduces a nonlinear coupling between 
the spin and boson degrees of freedom in (2.12a)-(2.12e), and back reaction is always 
present in a consistent semiclassical expansion of the electromagnetic field (compare 
with the introduction). 

For the purpose of determining the level statistics, it is convenient to perform a 
partial diagonalization of the Hamiltonian. This is discussed in the next section. 

(2.12d) & 
i A  

2 6  

3. Partial diagonalization of the Hamiltonian and boundary conditions 

In order to search for the eigenvalues of Hamiltonian ( l . l ) ,  it is convenient to perform 
a transformation introduced by Shore and Sander [lo]. Here, we adapt this transforma- 
tion to our context, formulating it in a different way. The essential tool is the unitary 
operator 

U =  S.(n+R)+iSy(11-R) (3.1) 
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on the tensor product C 2 @ F  where 
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R z ( - I ) ~  

obeys 

R2=U (3.3n) 

{R, a }  = {R, a+}  = 0. (3.3b) 

In (3.2), N is the number operator and in the above formula {. , ) denotes the usual 
anticommutator. Compared with [lo], the transformation (3.1) is directly formulated 
herein terms of spin-f operators, independently of the choice of a basis in C2. Performing 
the unitary transformation H'= UHU-' on the Hamiltonian H given by (1 .1)  we obtain 

"'=,~."+"l.. P D1-11 l . .\l"L --,c D l r - -  
A A 

2 4 
(3.4) L,UZ..\" -+). 11 ",U " I ",,UI'\ I ,L I c,,,. I U , 

In the calculation leading to (3.4) we have only used well-known properties of the S,, 
S,, S, operators and properties (3.3a)-(3.36) of R. The advantage of (3.4) is that H' 
is diagonal in the spin coordinate. We also point out that the same transformation 
(3.1) works for all E in (1.1). 

representation of Bialynicki-Birula and Bialynicki-Birula and, as in section 2, introduce 
in a consistent manner the second-order expansions (2.5) and (2.6) in (3.4). This 
procedure yields the following second-order semiclassical Hamiltonian corresponding 
to H': 

A 7 A 
if;= m(n,+pmj + o,&;,l? +- ( i  + E j d n ,  cos qj +- ( i  + E)(e-'*pm +pm e'") 

Looking now for semiciassicai version of iiamiitonian (j,4j, we empioy phase 

2 8 6  

A 
+ i A ( & - l ) 6 S , R s i n ~ + - ( I - E ) S , R ( e ~ ' " p , - p , e ' " )  (3.5) 4 6  

where R is given by (3.2) with N = n,+p+. An expression identical to (3.5) is obtained 
by performing ihe Shore-Sander iransforriiaiiun (3 . i )  (wiih N = n , + p ,  in (3.2)) direciiy 
on the semiclassical version (2.11) (more precisely, on the corresponding analogue of 
(2.11) when E # I ) .  

In order to compute the level statistics in section 4, we now formulate the eigenvalue 
problem in a subspace corresponding to a definite eigenvalue of the parity operator 
P = 2 S , R  which is, up  to a factor, the parity operator introduced by Graham and 
nuiineroacn (see ~ 1 1  anu reierentira urciein,. IL I* ~ m y  LU v e m y  ~ ~ a i  r CUIIIIIIULCS 

individually with the four terms in the Hamiltonian (1.1). Therefore, we have [ H, PI = 0 
for ail E. In particular, for E # 0, P is the only operator which commutes with H. 
Performing the transformation (3.1) on P, we obtain the very simple result 

p'E uI-'u-1=2.5, (3.6) 

.,_L_..~L-.L ,... r . 7  .-J ..c ...-... .L...Z-, I. :. .- :c.. .L-. " 

and it foiiows that [He, P'] = 0. 
The eigenvalue equation for the system with no phase approximation on a subspace 

of definite eigenvalue of P may now be immediately written down from (3.4) and 
(3.6) using the basis (+)@In) (or l - )@ln) ) ,  where Sz l*)=i~l*) .  The thus reduced 
Hamiltonians are of tridiagonal type and therefore easily diagonalizable numerically. 
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In the semiclassical approximation one proceeds similarly using (3.5) and (3.6) on the 
basis I + ) O / n , + m )  (or l - ) @ l n o - m ) ) .  These equations, which we do  not write down 
here explicitly, are the ones which will be used in section 4 to compute the level 
statistics in both cases. 

The nature of the phase approximation implies that the base states used in the 
semiclassical case must satisfy n , + m a O  (because of the square roots in (2.2) and 
(2.3)). Further, the expansions (2.5) and (2.6) imply that one must require m < no (see 
the appendix). !n practice, m wi!! be :&en such that . R ? ~  in 
order that the second-order approximation used here will be sufficiently precise. Hence 
we must formulate the eigenvalue equation in a finite subspace; this is of course always 
necessary in a numerical treatment and we are thus led naturally to study the boundary 
conditions at m, and -ma. 

z s I ? ? ~  wi!8 

We consider both free and cyclic boundary conditions defined by 

(free) 3 a+lno + mo) = 0 
aln,- mo) = 0 

(3.7) 

wiih B o t  CO, 2 r j  being an arbiirary angie. Aiihough iiir free boundiiiy i-oiiditioiis are 
sometimes more convenient, as we shall see, the cyclic boundary conditions must be 
imposed to guarantee unitarity of the phase operator (see the appendix). 

By (3.1) and (3.2) we see that in the case of free boundary conditions, the 
Shore-Sander transformed Hamiltonian (3.4) is preserved on the boundary states 
because properties (3.3aj and (3.36) remain valid and are the only ones needed. This 
is, howivii ,  iiot :he case fc: the qc!ic bacndary candi:i~ns becattse, i-::ead af (3.361, 
we have 

{ R ,  a}lno- mo) =2Ralno-mo) 

{ R, a+}ln,+ m,) = 2 Rat  In,+ mu) 
T L ^  ̂I- --a... :....- ,"^A I,. .._._  ̂I. An-.. tO_..... :- *Le 6- "-"."..-...-A U"...:,,̂..:̂- ,,,= d " " Y C  LFI' lLLIU113 ,=a" 1" Cnua U U u L ' Y a L J  L L L I I I a  111 Lllci L l P l l J l u l l l l r "  II 'UIIIIIUIIIPII  

which do not even commute with P'. 
Although the boundary conditions have no influence on global quantities such as 

the density of states and the level statistics of section 4, some local properties do  
depend on them. For example, the expectation values of [% #I2 and [ s s  41' in an 
eigenstate of the number operator equal with cyclic boundary conditions but not 
etherwise (see [I!!!. 

4. Level statistics with and without the phase approximation 

In this section we compare the N N D  [I71 for Hamiltonian (1.1) (original model, no 
phase approximationj with the NNI)  for the same tiamiitonian with the phase approxi- 
mation (2.10). By the results of section 3 this is equivalent to comparing the level 
statistics of Hamiltonians H', given by (3.4), and H ; ,  given by (3.51, which are both 
in tridiagonal form. The results are plotted in figures l(a-f) ( N N D  with no phase 
approximation) and figures 2(a-f) (NND with phase approximation). We have chosen 
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Figure 1. Nearest-neighbour spacing distribution of levels (original model, no phase 
approximation): (a) E = O ,  ( h )  e = 0 . 3 ,  (c) ~ = 0 . 5 ,  ( d )  ~ = 0 . 7 ,  ( e )  ~ = 0 . 9 ,  ( / j  < = I .  

A = 1, w = wo = 1 and diagonalized a lO’x 10’ matrix in each case (in the case with 
phase approximation, we took no= lo6 and the eigenvalues m of pm ranging from -m,  
to m,, with mo= 500). Each distribution in figures 1 and 2 corresponds to a value of 
E (ranging from 0 to I and specified in the captions). Note that the level statistics have 
been calculated forthe unfolded level distribution p ( E ) / p ( E ) ,  wherep(E) is the exact 
level density and p ( E )  the average level density ([17], p 13). 

What is conspicuous upon comparison is the difference between figures l ( a )  and 
2 ( 0 ) ,  both corresponding to the rotating-wave approximation ( E  =O). In the original 
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Figure 2. Nearest-neighbour spacing distribution of levels (semiclassical model, with phase 
approximation): ( a )  c = O , ( b )  e = O . 3 ,  ( e )  ~ = 0 . 5 ,  ( d )  z=O.7,(e) e=0 .9 ,  (f) E = I .  

model (figure l (a))  the N N D  is approximately uniform, while it is a 'delta peak' at 
o = wo = 1 for the model with phase approximation. Varying E, the 'delta peak'becomes 
progressively blurred (figures 2(b -e ) )  but still different from the distribution for the 
original model (figures l ( b - e ) ) ,  while for E = 1 both distributions are very similar 
(figures l(f) and 2 ( f ) ) .  

The explanation for the above, at first sight striking, behaviour is simple. For no 
large we may, for the purpose of computing the spectrum and the NND, disregard the 
second-order terms in (2.10) (we have verified this assertion by calculating the NND 
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with and without the terms proportional to l/& in (3.5)). The resulting Hamiltonian 
obtained from (1.1) (with E = O  and o = w n = l )  is 

M B Cibils et al 

H = n,+p,  +S,+h&(S+ e-'*+S-e") 

C = no+ p ,  + S,. (4.2) 

J, = c ,I+)@lm)+c , l - )@lm+ 1) (4.3) 

(4.1) 

which has the additional conservation law 

An eigenvector J, of C corresponding to the eigenvalue no+ m + f  of C is of the form 

where p+lm)= mlm), and S,l*) = * f l + ) .  The eigenvalue equation for fi is of the simple 
form 

(nn+ m +f)c, + A &  c2=  Ec, 

( nn+ m +f)c2+ A& c ,  = Ec, 

from which the eigenvalues follow: 

E = n , + m + f F A & .  

From (4.4) we see that, for no large, there is an overwhelming prc ability of 

(4.4) 

~~ aving 
two neighbouring eigenvalues corresponding to two consecutive values of m in (4.4) 
and hence nearest-neighbour spacings equal to one, in agreement with figure 2 ( a ) .  In 
contrast, for the original model the '@ and 'm factors coming from the operators 
a and ai are 'uniformly distributed', leading to a uniform distribution in figures l(a-e). 

For E = 1 (and only i n  this case) the analysis of Kus ([14], see also [48]) shows 
that the N N D  is 'centred around' (see [18]) the N N D  for the integrable limit h+m. By 
(3.5) we see that h- tm is-for the leading terms in (3.5) (i.e. disregarding the terms 
proportional to 1 1 6  in (3S))-equivaIent to the limit n,+m. This conclusion also 
holds, of course, if the phase approximation is performed directly upon the original 
Hamiitonian ( i . i ) .  This expiains tne simiiarity of figures i ( f )  ana i ( f - ) .  

The above discussion shows that, similarly to the classical limit [2], the semiclassical 
limit of the radiation field also entails special simplifications. The latter will probably 
turn out to be useful in several other applications to systems involving the electromag- 
netic field. Nevertheless, as remarked in the introduction, the N N D  is a non-perturbative 
quantum effect, and it is of interest to know whether a lower-order statistics also 
dispiays a qualitative difference between the original and semiciassicai models. -we 
have chosen the Dyson-Mehta A, statistics ([17], p 17). Figures 3 and 4 show that, as 
perhaps expected, no qualitative difference is visible at the level of A 3 .  Indeed, figure 
3 shows A,(L) as a function of L (see [17], p 17, for the definitions) in the cases E =0, 
E = 0.5 and E = 1 for the original model, while figure 4 shows the same function with 
the same three values of E for the semiclassical model (with phase approximation). 
we have sei ii = i .  Tne iimii f i + ( i  is meaningiess here because it wouid require ihe 
spin quantum number S + m, but S is fixed equal to f .  Although the Poisson and GOE 

curves are shown for comparison, they are not relevant to this model. In fact, in both 
the original and semiclassical models, after a value L a  1, A, assumes a constant value 
typical of picket fence o r  harmonic oscillator statistics corresponding to a spectrum 

..,~ 
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Figure 3. Dyron-Mehta A, statistics (original model, no phase approximation): ( a )  E = 0, 
( h ) e = 0 . 5 . ( c ) r = l .  

consisting of a sequence of equally spaced levels ([17], p 17). The constant value 

far from the constant value in figure 4 for E =0.5 and E = 1, while it differs from the 
constant value in figure 3 for E = 0 and E = 0.5. These facts may be explained as follows: 
in the semiclassical case the effective role of the quantum spin is reduced and the 
system resembles a harmonic oscillator throughout, while in the original model this is 
true for E = 1 (for reasons discussed before) but for E # 1 the role of the quantum spin 

I- ,2 - 0.083 agrees well with figure 3 for E = 1 and with figure 4 for E = O, and is not too 
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Figure 4. Dysan-Mehta A, statistics (semiclassical model. with phase approximation): ( a )  
E =0, ( b )  E = 0.5, (c )  E = 1. 

is more strongly felt (although an additional conservation law is present in the 
rotating-wave approximation, the system is not ‘equivalent’ to a harmonic oscillator). 
A slight rise of A, in the semiclassical case (figure 4, E = 0.5 and E = 1) may be due to 
contributions of shori ciassicai orbits, bui is noi reaiiy understood. We have checked 
that for various higher values of the quantum spin S, A3 shows the behaviour corre- 
sponding to Poisson statistics for E close to zero and to GOE for E close to one, up to 
a saturation value LmaX =2S+1. For S =  1 the behaviour is still of the harmonic 
oscillator type, and gradually changes. This will be discussed elsewhere [19]. 
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Appendix 

... In t h k  ....I a p p ~ ~ d j r  we provide B brief discunni~fi of the re!@.ion between the phase 
operator of section 2 and the unitary phase operator recently introduced by Pegg and 
Barnett [ll]. We show, in particular, that unitarity of the phase operator implies the 
cyclic boundary condition used in section 3,  and that the thus defined operator coincides 
with the straightforward adaptation of the phase operator of [ I l l  to the present 
situation. As a consequence, expansions (2 .5)  and (2.6) hold in the strong sense (i.e. 
on any state vector $1 on a proper subspace of 9. A more complete discussion will 
be given elsewhere [ 1 2 ] .  

By (2.2) and (2 .3) ,  

exp(-i+)(nn+p+) exp(i+) - ( n o + p + )  = 1 (AI) 

is equivalent to 

[a ,a'J=u.  (AV 

Now, usually, (AI) follows from 

[+, P+I = i !A3) 

but it is well known that ( A 3 )  (and the associated uncertainty relation) do not hold, 
in E do!Xin 9 where p+ is se!f-EC!jo;oin~; in fiC!, 9 consists of s.Ecient!y smeot!: 
functions $ E  L 2 ( 0 , 2 r )  such that $ ( 0 ) = $ ( 2 r ) ;  however, +$ is never in 9 if 
(see 1201 for a complete discussion). Nevertheless, we only need (Al)  for (A2) to be 
valid, and exp(*i+)$c 9 if $ E  9, so that this difficulty does not arise here. However, 
definitions (2.2) and (2.3) imply that all vectors Im) in the subspace of the definition 
satisfy nn+ m 0 in order that the square roots in ( 2 . 2 )  and (2 .3)  are defined, and 

On the subspace generated by {lm), m = -s, . . . , s} one has to impose a cyclicity 
condition to achieve unitarity: 

exp[-i(s+ 1)+] =exp(ia) exp(is+) aEW. (A4) 

hence .!Ea- r 3 0 i f  m E [-3; r!; Now, exp(-i$J) is unitary only on the who!$ of Lz(n, 2a). 

Choosing U = -(2s+ 1)e0 we get from (A4) 

27rm 
bm = eo+- 2 s + l  

m = -s, . . . , s 

i.e. a discrete spectrum as in [ I l l .  The thus defined unitary phase 'exp(-i+)' thus 
becomes equivalent to the following straightforward adaptation of the phase operator 
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e?p(i@j of [ l l ]  to the present situation. Define 92F21+l as the subspace of 9 generated 
by the states {ino-s), . . . , In,+ s)}, S S  no.  Define 'phase states' by 

M B Cibils et a/  

and let +,,, be given by (A5). Then {I+,,,), m = -s, . . . , s} form an orthonormal hasis 
of 2J2s+, and a unitary phase operator exp(i+) is defined by A .  

e?p(i+) =In,-s)(n,-s+ll+ln,-s+ l ) ( n o - s + 2 1 + .  . . 

. r ~ . . - ~  ,yo~,ce _ I ~ - .  Inat cxp[-;+) ~~~~~ 

+In,+s-  l)(n,+~l+exp[i(2s+l)8~]ln,+s)(n,-sl .  (AS) 

adion of 
e?p(i@) on the basis of eigenfunctions of N which follows from (AS). Hence (2.2) 
corresponds to 

un imj yiei& /m - i j ,  in agreemeiii With 

a = $p(i+)N"' 

and correspondingly 

a + =  N'"eTp(-i@) 
A .  

where e?p(-i+j = [Zp(i+)]+ = [exp(i+)l-l. The above operators do  not, however, 
satisfy the relation [a, a+]=U. Indeed, the relation corresponding to (Al)  is 

(A91 

However? on a suhspace F2%+: with s o < s  of 'physically accessible states' [!!I (now 
from In,) instead of 10) in [ l l ] ) ,  (Al)  (and hence (A2)) holds; indeed, I n , + s ) ( n , + s /  
in (A9) projects onto a state orthogonal to 925m+, if so<s. The expansions (2.5) and 
(2.6) thus hold in the strong sense in 92.50+, , if so< no: choose, for example, s = no 
above; the commutation relation (A2) is then correct on the subspace 92:2n+l if so< no .  
We now write (2.5) on 92so+1 : 

h.  exp(i@)N a p (  - i+)  - N = 1 - (2s + 1)ln,+ s) (n ,+s ] .  

a = f i e x p ( - i + )  [ l + G p m + .  i . .]. 

Expansion (A10) holds strongly, i.e. on any @ E  92;c2,+, , because, if @ E 2J2.yo+1, Ilpm$ll S 

sol1 *ll. 
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